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Simulation of High-Frequency Integrated

Circuits Incorporating Full-Wave Analysis

of Micro strip Discontinuities
Robert Kipp, Chi H. Chan, Andrew T. Yang, and Jack T. Yao

Abstract— We incorporate full-wave simulation of microstrip
interconnects into circuit analysis and show how predicted re-

sponses diverge from those based on models from a modern
microwave-circuit CAD package. A method is presented for char-

acterizing microstrip interconnects and discontinuities through

the method-of-moments applied to a mixed-potential integral

equation. The speed is greatly improved though the use of a

recently published techniques for rapid evaluation of microstrip

spatial Green’s functions. A microstrip circuit element is analyzed

separately through this procedure, and scattering parameters are

extracted from the computed current density. These parameters
are passed to a circuit simulator, where small- and large-signal
analysis reveal how differences in interconnect modeling affect
predicted responses.

I. INTRODUCTION

The increasing speeds and frequencies of analog and digital

integrated circuits has generated greater interest in the use

of microstrip structures in the interconnects among discrete

elements. The development of appropriate design guidelines

requires analysis techniques which incorporate into circuit

simulation the frequency-dependent effects of these struc-

tures. While existing microwave-circuit CAD packages can

include microstrip sections in their analyses, these are handled

through lumped capacitance and inductance models, quasi-

static models, or empirically based closed-form expressions

which often fail to account for radiation and other high-

frequency phenomena of microstrip. A more rigorous approach

is to analyze the structure without simplifying low-frequency

or quasi-static approximations, often referred as full-wave

analysis.

Much research has been directed toward the full-wave

model ing of microstrip interconnects and discontinuities

[1]–[3]. One approach is finite-differences time-domain

(FDTD) whereby the substrate between the upper conductor

and the ground plane is subdivided into a mesh and

electromagnetic waves are propagated in time and space

through the substrate subject to boundary conditions [4].

Another is method-of-moments (MOM) applied to a relevant

integral equation [1], [5], [6].

We confine our analysis to the MOM approach, the details

of which are discussed in section II. In this application,
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MOM involves constructing and solving an impedance matrix

whose elements are the mutual impedances among subdivided

sections of the microstrip surface conductor. Owing to the

nature of the basic microstrip geometry, generating these im-

pedances in a full-wave analysis is often more time consuming

than solving the resulting matrix. However, by employing

a technique developed in [7], [8] and briefly described in

this paper, this process of filling the impedance matrix is

accelerated to the point where matrix inversion dominates the

solution process.

The MOM procedure yields current distributions for a

given set of port excitations. We briefly describe in section

III a method for extracting the scattering parameters and

transmission-line characteristic impedance from the current.

With these data, the microstrip structure is made accessible

to circuit simulation. Analysis of a microstrip stub structure

is compared with experimental results to validate the overall

approach.

In Section IV, small- and large-signal circuit analyses are

applied to a microwave amplifier. A harmonic-balance tech-

nique used for large-signal simulation is briefly described. The

amplifier includes a microstrip meander, a MESFET transistor,

and several lumped elements. The meander, which serves as

a filtering element, is analyzed both by Libra version 3.000,

a commercial microwave CAD package, and the full-wave

model outlined below. Circuit simulation is performed by

MISIM (Model-Independent Simulator), which employs the

computed meander S-parameters and parametric data from

the other elements. In the simulation, divergence in predicted

performance based on the full-wave modeling and results from

Libra is evident at higher frequencies.

II. MODELING MICROSTRIP DISCONTINUITIES

A. Computing the Current Distribution

Fig. 1 shows the basic microstrip geometry with an arbitrary

strip structure on the surface. The space above the dielectric is

unbounded. Simplifying assumptions include an isotropic and

horizontally-unbounded dielectric layer, a ground plane with

zero resistivity, and an infinitely thin upper conductor with

zero resistivity. The method may be extended to incorporate

multiple dielectric and strip layers, ohmic losses in the strips,

and structures supporting current in the vertical direction [3],

[9]. There is no limit on the number of ports extending from
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Fig. 1. Single layer microstrip geometry with a 2-port discontinuity.

the structure. The determination of current distribution as

developed here does not require a lossless dielectric.

The arbitrary discontinuity or interconnect may be mod-

eled through the method-of-moments (MOM) [6] applied to

a relevant integral equation. We employ a mixed potential

integral equation (MPIE) [3], which relates the current and

charge densities on the upper conductor to the electric field

incident upon that conductor. An alternative formulation is

the dyadic electric-field integral equation (EFIE). In microstrip

problems, however, this suffers from strong singularities in its

Green’s fimction. The MPIE also encounters singularities, but

they are weak, rendering more stable and quickly convergent

algorithms [9].

Solving the MPIE yields the surface currents from which S-

parameters may be obtained. The MPIE for this problem may

be written as two scalar equations,

–E~’ = –JW

J

dS’Jz(#)G~(l# – Tl)
s

a—
-18X s

dS’q3(r’)G,(l# – ~1) (1)

where J~ and Jv are the transverse surface current densities

on the upper conductor and qs is the surface charge density.

Oreen’s functions G~’ and G~Y are, respectively, the x- and

y-directed magnetic vector potentials for infinitesimal dipoles

at the substrate/air interface. q~ is the surface charge density

and Green’s function G~ the scalar potential for a pulsating

point-chaxge. While such isolated charges are non-physical,

G~ is a useful mathematical device [9] for generating the

scalar potential from a physical charge density qs. E~c and

E$c are the incident electric-fields and are zero except where

the ports are driven.

In applying MOM to solve (1) and (2) and determine the

surface currents, the interconnect and suitably long sections

of its ports are subdivided into a rectangular grid whose

subsections serve as domains for x- and y-directed current

basis functions. The surface current densities on the upper

conductor are expressed as

I bxj (r) I
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Fig. 2. Placement of roof-top basis functions and razor-blade testing func-
tions in a rectrmgular grid.

where b=j and bvj are individual basis functions weighted by

unknown coefficients Czj and CV~. iVz and NY are the total

number of current basis functions in each direction needed to

fill out the geometry of the interconnect. We follow [10] in

implementing this procedure, and the reader is referred to that

paper for a full development and justifications. Briefly, we

choose roof-top functions, shown in Fig. 2, for bases bzj and

byj. For bzj (7), each roof-top occupies two subcells in the

x-direction and one subcell in the y-direction, the resulting

distribution is piece-wise linear in the x-direction and stepped

in the y-direction. A complementary arrangement exists for

bvj (T).

By virtue of the continuity equation,

the charge distribution is determined directly

(5)

from these cur-

rents, giving a two-dimensional step distribution. With the

charge now fixed in this manner, the triangular variation of

each current basis is approximated by a pulse of equal height

and half the length in the direction of current flow.

Basis function weights are found by using the MPIEs

to construct a system of iV linear equations where IV =

IVz + Aty. The fields are tested over each current segment by

integrating both sides of (1) and (2) in conjunction with a set

of N testing functions:

where

(a, b)= ~ dxdya(x, y) b(x, y). (8)

A., Av and @ are the vector and scalar potentials repre-

sented as integrals in (1) and (2). As in [10], we employ
razor-blade functions tzj and tyj, shown in Fig. 2. In the
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x-direction, t$j (F) is a pulse running from the center of one

subcell to the center of the next subcell; its y-dependence

is an impulse function. A similar description holds for tgj.

The unknown coefficients Cmj and Cyj of (3) and (4) me

transferred outside of the integration. Equations (6) and (7)

are expressed in matrix form as

[3=[2:21[3 (9)

where Vz and Vv are vectors whose elements v~j and Vuj

are the left-hand side of (6) and (7). These are set to zero

except where testing functions coincide with locations of port

excitation; here they are set to a constant, corresponding to a

horizontal voltage source. The impedance matrix Z roughly

corresponds to the mutual impedances between the current

elements. It is divided into co-polarized and cross-polarized

contributions, the latter being generated only through the

contribution of scalar potential, @. CZ and Cg are vectors

containing the coefficients CZ7 and cvj.

The scalar potential contribution in (6) and (7) involves

a partial derivative of the scalar Green’s function G~. This

potential is computed numerically, so we employ the usual

procedure of transferring the derivative to the testing function

through integration by parts. The derivative of the razor blade

function is a pair of oppositely signed impulse functions; thus,

the contribution of the scalar potential becomes the difference

in scalar potentials sampled in the center of adjacent subcells.

B. Eflcient Evaluation of Green’s Function

With microstrip geometries, the most difficult aspect of

generating the elements for impedance matrix Z in (9) is

the evaluation of the Green’s functions G. and G~. They

are commonly expressed as Sommerfeld-type integrals [1 1],

inverse Hankel transforms of the spectral-domain Green’s

function. Closed-form spectral Green’s functions can be gener-

ated for multiple layer dielectrics over a ground plane through

equivalent transmission line analysis [12], [13]. For the single

layer geometry of Fig. 1, the spectral Green’s functions with

the source and observation point at the free-space/dielectric

interface are given by [8]

~y _ h 1 e–~k’” [1 + &E(kP)]
4T J2kzo

(lo)

Gq.~— 1 e–~k~”[l + RTE(lCP) + %(~p)l,
he. J2kzo

(11)

where CO and pO are the free-space permittivity and per-

meability. Wavenumbers kZO and kP are the z- and p-

components of free-space propagation constant kO . Reflection

coefficients RTE and Rq account for the effect of the

substrate over the ground plane. The reader is referred to [8]

for a full exposition of these equations.

The spatial Green’s functions can now be written as

Ga,q(p) = /’+wG.,q@(kpP)k, dk, (12)
J–m

where p is the displacement between the source and the

observation point. While these Sommerfeld integrals for G~”

and G~ may be evaluated efficiently through analytic ap-

proximations in the near- and far-field [11], intermediate

regions require quadrature with slowly convergent, oscillatory

integrands. However, a technique developed in [7] and im-

proved in [8] allows highly efficient evaluation in all regions.

Briefly, the Sommerfeld integral can be separated into three

contributions: 1) quasi-dynamic images, 2) surface waves

and 3) complex images. The first two contributions, which

dominate respectively in the near- and far-fields, are extracted
from RTE and Rq and handled analytically. What remains in

RTE and Rq is sufficiently well-behaved to be approximated

by a short series of exponential whose exponents and weights

are computed using Prony’s method [14]. Our experience

shows that two to four terms, depending on the frequency, are

appropriate for this expansion. The inverse Hankel transforms

involving these exponential are then handled analytically.

Particular care should be given in the selection of the number

of expansion terms for Gq since its contribution in (6) and

(7) is a second-order difference, one from the pulse doublet

and one from the testing procedure.

Our experience shows that this process yields about a 100

fold reduction in computation time for the multiple evaluations

of potentials in computing the inner products of (6) and (7)

and was instrumental in reducing the time spent filling the

impedance matrix to the point where it no longer dominated

the computation time in the MOM procedure.

III. EXTRACTION OF SCATTERING PARAMETERS

The scattering parameters of an interconnect are extracted

by introducing a combination of excitations at the port ends

and examining the current distribution on the ports. Excitation

is provided by horizontal voltage sources spanning the width

of the port end and directed along its length [1], [15]. In

this scheme, the port ends are terminated in “open-circuits”,

which can be represented by an equivalent impedance. The

reader may observe that this is not the approach normally

used in practice of a wave induced from a matched source.

Further, the definition of the individual S-parameters assumes

no reflections at the port end. Still, this method is viable

because the relationships among the current waves entering

and leaving the interconnect ports are governed exclusively

by the interconnect S-parameters. In other words, having open-

circuited port ends instead of matched termination will change
the current distribution but not these relationships. By applying

a sufficient number of unique excitations, the S-parameters can

be determined without direct knowledge of the effects of the

open-circuit port terminations.

For an arbitrary lV-port discontinuity, N linearly-indepen-

dent excitation combinations are required. The computed cur-

rent distributions for each excitation and on each port are fit

to a unimodal transmission line form [16]:

1(T) = ae-vz – bevz, (13)

where z is the position along the line. 1(z) is the current

distribution on the port, obtained by integrating Jz across its
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Fig. 3. Dimension and substrate parameters of microstrip stub and attached

uniform line.

width. a and b are the complex amplitudes wave amplitudes.

Complex propagation constant ~ is prior obtained by MOM

analysis of the uniform line(s).

In fitting the current distribution to the unimodal-propaga-

tion model, samples near the port ends and the discontinuity

should be left out owing to the presence of higher-order modes.

The S-parameters are then obtained from the computed wave

amplitudes by relating them through a system of N equations.

If the S-parameters are to be employed in a circuit analysis,

it will also be necessary to know the characteristic impedances

of the ports. The uniform line has been extensively studied,

and impedances can be most easily obtained from established

closed-foti formulas [17].

A. Validation

We demonstrate the validity of this procedure by modeling

a tnicrostrip stub whose S-parameters have been measured [1].

The substrate and stub dimensions are given in Fig. 3. In the

MOM procedure, a uniform discretization with a 0.24 x 0,24

mm subcell is selected and the length of the transmission line

set to 102 subcells or 24.48 mm. For the transmission line

alone, there are 101 x 6 x-directed and 102 x 5 y-directed

current basis functions. The entire strttcture requires a total

of 1215 basis functions. Taking advaritage of the redundancy

in a uniform discretization and the efficient algorithms for

computing Green’s functions describetl above, the evaluation

of the elements for the 1215 x 1215 matrix requires 2.5

CPU minutes on on a VAX-6000-530 computer, much shorter

than the 30 CPU minutes required to reduce the matrix using

LINPACK.

The structure is, analyzed from 7.5 to 12 GHz. The transmis-

sion S12 computed by MOM and Libra ver. 3.000 is compared

with measttrement in Fig. 4. Measurement and MOM show

the stub resonance near 10.15 GHz while Libra predicts a

resonance at 9 GHz. The stub is modeled in Libra with a

microstrip TEE element attached to a section of open-circuited

line with capacitive edge-effect. These elements are operated

within specified regions of validity [18].

IV. CIRCUIT SIMULATION

To demonstrate the importance of accurate characterization

of interconnects, we analyze the single-stage amplifier in

Fig. 5. The active device is a GaAs MESFET connected

to the microstrip meander on the same substrate. Both AC

small-signal and large-signal, harmonic balance analyses are

Stub ResDonse
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1

~:

o 0 0 MOM Computation ----
— — Libra ----------

0.8 -0
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\, /
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Fig. 4. Computed (Method-of-Moments, Libra v 3.000) and measured trans-

mission responses of stub.

+0.1 v ii +3 v

Fig. 5. Single-stage microwave amplifier.

performed using MISIM (Model-Independent Simulator) [19].

Harmonic balance [20] is a frequency-domain technique for

steady-state simulation of systems containing nonlinear de-

vices. Typical passive element properties such as frequency

dependent behavior are directly processed, while ncmlinearities

of the active devices are handled through the FFT conversion

of the time-domain device equations. The computed response

is interpreted as harmonic distortion. In these frequency-

domain analyses, the meander is treated as a two-po~ network

characterized by its S-parameters, which are converted into

Y-parameters for circuit simulation.

The dimensions of the meander and gallium-arsenide sub-

strate are given in Fig. 6. The meander is initially discretized

into 0.333 x 0.333 mm subcells. The ports extend 80 subcells

in the model in order to collect current samples over a

sufficient portion of a wavelength at “lower frequencies. This

level of discretization is adequate for analysis from 1 GHz to

4 GHz. Beyond 4 GHz, a 0.1665 x 0.333 mm subcell is used

in order. to generate an adequate number of current samples

per wavelength on the ports.

Results for full-wave analysis of the meander are given in

Fig. 7. The meander is also modeled on Libra ver. 3.000

using ~ combination of comer bends and coupled lines. It

should be noted that the corner bend elements are being
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t
0.795 mm

Fig. 6. Dimensions aud substrate parameters of microstrip meander.
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Fig. 7. 2-port parameters of symmetric meander computed by MOM and

Librav 3.000.

applied beyond the stipulated range of validity as specified

in the EEsofElement Catalog [18]: E. < 10.4; no applicable

substitute could be found. A reference impedance of38.5 ohms

is specified to generate S-parameters, a value determined as

representative at lower frequencies using LINECALC. The

response predicted by MOM and Libra diverge with increasing

frequency. With Libra, the gain IS1l 12 + 1S1212 is always

unity, suggesting a model which does not account for radiation.

The full-wave model, however, shows gain in Fig. 8 trailing

off, an effect which can be attributed to radiation both in the

space above the dielectric and trapped along the dielectric as

a surface wave [21].

The MISIM computed small-signal response of the amplifier

is given in Fig. 9. The source V& is stepped in frequency from

1 to 15 GHz. The difference in predicted meander performance

by MOM and Libra is manifest at higher frequencies in

the resulting amplifier gain responses I~ 1. For reference,

the small-signal response with the meander removed is also

shown.

Large-signal simulations for 1, 3, and 5 GHz driving fre-

quencies are shown in Fig. 10(a). For each frequency, the

source has an amplitude of 0.4 volts peak-to-peak. The har-

monic spectra computed from harmonic-balance are Fourier

transformed to render steady-state time responses. Signals

VOUt are traced over one cycle at each frequency for the

N

—a
@_

+

1

0.8 -

0.6 - )

0.2

t
oo~5

Frequency (GHz)
Fig. 8. MOM computed gain of microstrip meauder, showing significant

radiation loss at higher frequencies.

=

\
_-— w/o meander

1

‘.,

t)o~5

Frequency (GHz)
Fig. 9. Amplifier small-signal gain with MOM and Libra characterizations

of the meander and with microstrip meander absent.

amplifier with the meander characterized both by MOM and

Libra. The large-signal responses with the meander removed

are given in Fig. 10(b). In this case, the signals are nearly

identical. The MESFET is overdriven, producing clipping dis-

tortion at the output. At 1 GHz, the full-wave and Libra based

amplifier simulations are in good agreement. As the frequency

is increased to 5 GHz, however, pronounced differences appear

in the predicted distortion. While meander characterizations by

Libra and MOM are comparable at 5 GHz, clipping produces

significant energy in the harmonics at 10 and 15 GHz, where

MOM and Libra diverge.

V. CONCLUSION

In this paper, we have demonstra~ed a

wave analysis of microstrip interconnects

with microwave circuit simulation.

technique for full-

and its integration
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Large-Signal Response
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Fig. 10. Tme-domairr amplifier output computed using harmonic-balance

analysis with 0.4 volt p-p (Iarge-signat) input at 1, 3 and 5 GHz: (a) responses

with MOM and Libra characterization of the meander, and (b) responses with

microstrip meander absent.

A description was given of interconnect modeling through

application of the method-of-moments to a mixed-potential

integral equation. We employed a recently published algorithm

for efficient and accurate evaluation of microstrip Green’s

functions, demonstrating that for uniform discretization in the

MOM procedure, impedance matrix fill-time can be reduced

to the point where matrix solve-time is dominant.

The importance of full-wave analysis was demonstrated in

the case of a microstrip stub, where our overall procedure

compared favorably with experimental data available in the

literature. Results from a modern commercial microwave CAD

package compared less favorably.

Small- and large- signal analyses were applied in simulating

a single-stage amplifier circuit. The circuit incorporated a me-

ander microstrip section whose characteristics were predicted

by both full-wave analysis and a microwave CAD package.

853

With small-signal analysis, differences in characterizing the

meander were manifest in the amplifier response at higher

frequencies. When driven at lower frequencies with a large

signal, harmonics generated by the amplifier at higher fre-

quencies resulted in different distortion phenomena amongst

the two meander representations.
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