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Simulation of High-Frequency Integrated
Circuits Incorporating Full-Wave Analysis
of Microstrip Discontinuities

Robert Kipp, Chi H. Chan, Andrew T. Yang, and Jack T. Yao

Abstract— We incorporate full-wave simulation of microstrip
interconnects into circuit analysis and show how predicted re-
sponses diverge from those based on models from a modern
microwave-circuit CAD package. A method is presented for char-
acterizing microstrip interconnects and discontinuities through
the method-of-moments applied to a mixed-potential integral
equation. The speed is greatly improved though the use of a
recently published techniques for rapid evaluation of microstrip
spatial Green’s functions. A microstrip circuit element is analyzed
separately through this procedure, and scattering parameters are
extracted from the computed current density. These parameters
are passed to a circuit simulator, where small- and large-signal
analysis reveal how differences in interconnect modeling affect
predicted responses.

I. INTRODUCTION

The increasing speeds and frequencies of analog and digital
integrated circuits has generated greater interest in the use
of microstrip structures in the interconnects among discrete
elements. The development of appropriate design guidelines
requires analysis techniques which incorporate into circuit
simulation the frequency-dependent effects of these struc-
tures. While existing microwave-circuit CAD packages can
include microstrip sections in their analyses, these are handled
through lumped capacitance and inductance models, quasi-
static models, or empirically based closed-form expressions
which often fail to account for radiation and other high-
frequency phenomena of microstrip. A more rigorous approach
is to analyze the structure without simplifying low-frequency
or quasi-static approximations, often referred as full-wave
analysis.

Much research has been directed toward the full-wave
modeling of microstrip interconnects and discontinuities
[1]-[3]. One approach is finite-differences time-domain
(FDTD) whereby the substrate between the upper conductor
and the ground plane is subdivided into a mesh and
electromagnetic waves are propagated in time and space
through the substrate subject to boundary conditions [4].
Another is method-of-moments (MOM) applied to a relevant
integral equation [1], [5], [6].

We confine our analysis to the MOM approach, the details
of which are discussed in section II. In this application,
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MOM involves constructing and solving an impedance matrix
whose elements are the mutual impedances among subdivided
sections of the microstrip surface conductor. Owing to the
nature of the basic microstrip geometry, generating these im-
pedances in a full-wave analysis is often more time consuming
than solving the resulting matrix. However, by employing
a technique developed in [7], [8] and briefly described in
this paper, this process of filling the impedance matrix is
accelerated to the point where matrix inversion dominates the
solution process.

The MOM procedure yields current distributions for a
given set of port excitations. We briefly describe in section
IIT a method for extracting the scattering parameters and
transmission-line characteristic impedance from the current.
With these data, the microstrip structure is made accessible
to circuit simulation. Analysis of a microstrip stub structure
is compared with experimental results to validate the overall
approach.

In Section IV, small- and large-signal circuit analyses are
applied to a microwave amplifier. A harmonic-balance tech-
nique used for large-signal simulation is briefly described. The
amplifier includes a microstrip meander, a MESFET transistor,
and several lumped elements. The meander, which serves as
a filtering element, is analyzed both by Libra version 3.000,
a commercial microwave CAD package, and the full-wave
model outlined below. Circuit simulation is performed by
MISIM (Model-Independent Simulator), which employs the
computed meander S-parameters and parametric data from
the other elements. In the simulation, divergence in predicted
performance based on the full-wave modeling and results from
Libra is evident at higher frequencies.

II. MODELING MICROSTRIP DISCONTINUITIES

A. Computing the Current Distribution

Fig. 1 shows the basic microstrip geometry with an arbitrary
strip structure on the surface. The space above the dielectric is
unbounded. Simplifying assumptions include an isotropic and
horizontally-unbounded dielectric layer, a ground plane with
zero resistivity, and an infinitely thin upper conductor with
zero resistivity. The method may be extended to incorporate
multiple dielectric and strip layers, ohmic losses in the strips,
and structures supporting current in the vertical direction [3],
[9]. There is no limit on the number of ports extending from
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Fig. 1.  Single layer microstrip geometry with a 2-port discontinuity.

the structure. The determination of current distribution as
developed here does not require a lossless dielectric.

The arbitrary discontinuity or interconnect may be mod- l

eled through the method-of-moments (MOM) [6] applied to
a relevant integral equation. We employ a mixed potential
integral equation (MPIE) [3], which relates the current and
charge densities on the upper conductor to the electric field
incident upon that conductor. An alternative formulation is
the dyadic electric-field integral equation (EFIE). In microstrip
problems, however, this suffers from strong singularities in its
Green’s function. The MPIE also encounters singularities, but
they are weak, rendering more stable and quickly convergent
algorithms [9].

Solving the MPIE yields the surface currents from which S-
parameters may be obtained. The MPIE for this problem may
be written as two scalar equations,
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where J, and J,, are the transverse surface current densities
on the upper conductor and ¢, is the surface charge density.
Green’s functions G2* and GYY are, respectively, the z- and
y-directed magnetic vector potentials for infinitesimal dipoles
at the substrate/air interface. ¢, is the surface charge density
and Green’s function G, the scalar potential for a pulsating
point-charge. While such isolated charges are non-physical,
Gg is a useful mathematical device [9] for generating the
scalar potential from a physical charge density g,. E:*° and
E;"C are the incident electric-fields and are zero except where
the ports are driven.

In applying MOM to solve (1) and (2) and determine the
surface currents, the interconnect and suitably long sections
of its ports are subdivided into a rectangular grid whose
subsections serve as domains for z- and y-directed current
basis functions. The surface current densities on the upper
conductor are expressed as

N
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Fig. 2. Placement of roof-top basis functions and razor-blade testing func-
tions in a rectangular grid.

where b,; and b,; are individual basis functions weighted by
unknown coefficients c,; and cy;. N, and N, are the total
number of current basis functions in each direction needed to
fill out the geometry of the interconnect. We follow [10] in
implementing this procedure, and the reader is referred to that
paper for a full development and justifications. Briefly, we
choose roof-top functions, shown in Fig. 2, for bases b,; and
by; . For b,;(7), each roof-top occupies two subcells in the
z-direction and one subcell in the y-direction; the resulting
distribution is piece-wise linear in the z-direction and stepped
in the y-direction. A complementary arrangement exists for
by; (7).
By virtue of the continuity equation,

aJ, 8J,
—JwWqs = O + '5,;"7 (5)

the charge distribution is determined directly from these cur-
rents, giving a two-dimensional step distribution. With the
charge now fixed in this manner, the triangular variation of
each current basis is approximated by a pulse of equal height
and half the length in the direction of current flow.

Basis function weights are found by using the MPIEs
to construct a system of N linear equations where N =
Nz + Ny . The fields are tested over each current segment by
integrating both sides of (1) and (2) in conjunction with a set’
of N testing functions:

. oo
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where
(a,b) = /dw dy a(z,y) b(z,y). ¥

A;, Ay and ® are the vector and scalar potentials repre-
sented as integrals in (1) and (2). As in [10], we employ
razor-blade functions ¢,; and ty;, shown in Fig. 2. In the
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z-direction, ¢,;(7) is a pulse running from the center of one
subcell to the center of the next subcell; its y-dependence
is an impulse function. A similar description holds for ;.
The unknown coefficients c,; and c,; of (3) and (4) are
transferred outside of the integration. Equations (6) and (7)

are expressed in matrix form as
gl zllal e
Vy Zys  Zyy || Cy
where V, and Vj, are vectors whose elements v,; and v,
are the left-hand side of (6) and (7). These are set to zero
except where testing functions coincide with locations of port
excitation; here they are set to a constant, corresponding to a
horizontal voltage source. The impedance matrix Z roughly
corresponds to the mutual impedances between the current
elements. It is divided into co-polarized and cross-polarized
contributions, the latter being generated only through the
contribution of scalar potential, ®. €, and C, are vectors
containing the coefficients c,; and cy;.
The scalar potential contribution in (6) and (7) involves
a partial derivative of the scalar Green’s function (. This
potential is computed numerically, so we employ the usual
procedure of transferring the derivative to the testing function
through integration by parts. The derivative of the razor blade
function is a pair of oppositely signed impulse functions; thus,
the contribution of the scalar potential becomes the difference
in scalar potentials sampled in the center of adjacent subcells.

B. Efficient Evaluation of Green’s Function

With microstrip geometries, the most difficult aspect of
generating the elements for impedance matrix Z in (9) is
the evaluation of the Green’s functions G, and G,. They
are commonly expressed as Sommerfeld-type integrals [11],
inverse Hankel transforms of the spectral-domain Green’s
function. Closed-form spectral Green’s functions can be gener-
ated for multiple layer dielectrics over a ground plane through
equivalent transmission line analysis [12], [13]. For the single
layer geometry of Fig. 1, the spectral Green’s functions with
the source and observation point at the free-space/dielectric
interface are given by [8]

A Mo Lok, X
o« T 4 jzkzoe [1 +RTE(}vp)] (10)
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e = [1 + RTE(kp) + Rq(kp)], (11)
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where €, and p, are the free-space permittivity and per-
meability. Wavenumbers k., and k, are the z- and p-
components of free-space propagation constant k, . Reflection
coefficients Rrgp and Rg account for the effect of the
substrate over the ground plane. The reader is referred to [8]
for a full exposition of these equations.

The spatial Green’s functions can now be written as

+oo
Gaq(p) = / Gayq Hg(kpp) kp dk, (12)
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where p is the displacement between the source and the
observation point. While these Sommerfeld integrals for G¢°
and G, may be evaluated efficiently through analytic ap-
proximations in the near- and far-field [11], intermediate
regions require quadrature with slowly convergent, oscillatory
integrands. However, a technique developed in [7] and im-
proved in [8] allows highly efficient evaluation in all regions.
Briefly, the Sommerfeld integral can be separated into three
contributions: 1) quasi-dynamic images, 2) surface waves
and 3) complex images. The first two contributions, which
dominate respectively in the near- and far-fields, are extracted
from Rrp and R, and handled analytically. What remains in
Rrp and R, is sufficiently well-behaved to be approximated
by a short series of exponentials whose exponents and weights
are computed using Prony’s method [14]. Our experience
shows that two to four terms, depending on the frequency, are
appropriate for this expansion. The inverse Hankel transforms
involving these exponentials are then handled analytically.
Particular care should be given in the selection of the number
of expansion terms for Gq since its contribution in (6) and
(7) is a second-order difference, one from the pulse doublet
and one from the testing procedure.

Our experience shows that this process yields about a 100
fold reduction in computation time for the multiple evaluations
of potentials in computing the inner products of (6) and (7)
and was instrumental in reducing the time spent filling the
impedance matrix to the point where it no longer dominated
the computation time in the MOM procedure.

III. EXTRACTION OF SCATTERING PARAMETERS

The scattering parameters of an interconnect are extracted
by introducing a combination of excitations at the port ends
and examining the current distribution on the ports. Excitation
is provided by horizontal voltage sources spanning the width
of the port end and directed along its length [1], {15]. In
this scheme, the port ends are terminated in “open-circuits”,
which can be represented by an equivalent impedance. The
reader may observe that this is not the approach normally
used in practice of a wave induced from a matched source.
Further, the definition of the individual S-parameters assumes
no reflections at the port end. Still, this method is viable
because the relationships among the current waves entering
and leaving the interconnect ports are governed exclusively
by the interconnect S-parameters. In other words, having open-
circuited port ends instead of matched termination will change
the current distribution but not these relationships. By applying
a sufficient number of unique excitations, the S-parameters can
be determined without direct knowledge of the effects of the
open-circuit port terminations.

For an arbitrary N-port discontinuity, N linearly-indepen-
dent excitation combinations are required. The computed cur-
rent distributions for each excitation and on each port are fit

to a unimodal transmission line form [16]:
I{z) = ae™"® — be?*, (13)

where x is the position along the line. I(z) is the current
distribution on the port, obtained by integrating .J, across its
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Fig. 3. Dimension and substrate parameters of microstrip stub and attached
uniform line.

width. a and b are the complex amplitudes wave amplitudes.
Complex propagation constant ~ is prior obtained by MOM
analysis of the uniform line(s).

In fitting the current distribution to the unimodal-propaga-
tion model, samples near the port ends and the discontinuity
should be left out owing to the presence of higher-order modes.
The S-parameters are then obtained from the computed wave
amplitudes by relating them through a system of N equations.

If the S-parameters are to be employed in a circuit analysis,
it will also be necessary to know the characteristic impedances
of the ports. The uniform line has been extensively studied,
and impedances can be most easily obtained from established
closed-form formulas [17]. :

A. Validation

We demonstrate the validity of this procedure by modeling
a microstrip stub whose S-parameters have been measured [1].
The substrate and stub dimensions are given in Fig. 3. In the
MOM procedure, a uniform discretization with a 0.24 x 0.24
mm subcell is selected and the length of the transmission line
set to 102 subcells or 24.48 mm. For the transmission line
alone, there are 101 x 6 z-directed and 102 x 5 y-directed
current basis functions. The entire structure requires a total
of 1215 basis functions. Taking advaritage of the redundancy
in a uniform discretization and the efficient- algorithms for
computing Green’s functions described above, the evaluation
of the elements for the 1215 x 1215 matrix requires 2.5
CPU minutes on on a VAX-6000-530 computer, much shorter
than the 30 CPU minutes required to reduce the matrix using
LINPACK.

The structure is analyzed from 7.5 to 12 GHz. The transmis-
sion S12 computed by MOM and Libra ver. 3.000 is compared
with measurement in Fig. 4. Measurement and MOM show
the stub resonance near 10.15 GHz while Libra predicts a
resonance at 9 GHz. The stub is modeled in Libra with a
microstrip TEE element attached to a section of open-circuited
line with capacitive edge-effect. These elements are operated
within specified regions of validity [18].

1V. CIRCUIT SIMULATION

To demonstrate the importance of accurate characterization
of interconnects, we analyze the single-stage amplifier in
Fig. 5. The active device is a GaAs MESFET connected
to the microstrip meander on the same substrate. Both AC
small-signal and large-signal, harmonic balance analyses are
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Fig. 5. Single-stage microwave amplifier.

performed using MISIM (Model-Independent Simulator) [19].
Harmonic balance [20] is a frequency-domain technique for
steady-state simulation of systems containing nonlinear de-
vices. Typical passive element properties such as frequency
dependent behavior are directly processed, while riorilinearities
of the active devices are handled through the FFT conversion
of the time-domain device equations. The computed response
is interpreted as harmonic distortion. In these frequency-
domain analyses, the meander is ireated as a two—pori network
characterized by its S-parameters, which ate converted into
Y-parameters for circuit simulation.

The dimensions of the meander and gallium-arsenide sub-
strate are given in Fig. 6. The meander is initially discretized
into 0.333 x 0.333 mm subcells. The ports extend 80 subcells
i the model in order to collect current samples over a
sufficient portion of a wavelerigth at lower frequencies. This
level of discretization is adequate for analysis from 1 GHz to
4 GHz. Beyond 4 GHz, a 0.1665 x 0.333 mm subcell is used
in order.to generate an adequate number of current samples
per wavelength on the ports.

Results for full-wave analysis of the meander are given in
Fig. 7. The meander is also modeled on Libra ver. 3.000
using a combination of comer bends- and coupled lines. It
should be noted that the corner bend elemeiits are being
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Fig. 6. Dimensions and substrate parameters of microstrip meander.
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Fig. 7. 2-port parameters of symmetric meander computed by MOM and
Librav 3.000.

applied beyond the stipulated range of validity as specified
in the EEsof Element Catalog [18]: €, < 10.4; no applicable
substitute could be found. A reference impedance of 38.5 ohms
is specified to generate S-parameters, a value determined as
representative at lower frequencies using LINECALC. The
response predicted by MOM and Libra diverge with increasing
frequency. With Libra, the gain |S11]? + |S12]? is always
unity, suggesting a model which does not account for radiation.
The full-wave model, however, shows gain in Fig. § trailing
off, an effect which can be attributed to radiation both in the
space above the dielectric and trapped along the dielectric as
a surface wave [21].

The MISIM computed small-signal response of the amplifier
is given in Fig. 9. The source V;,, is stepped in frequency from
1 to 15 GHz. The difference in predicted meander performance
by MOM and Libra is manifest at higher frequencies in
the resulting amplifier gain responses |¥721: |. For reference,
the small-signal response with the meander removed is also
shown.

Large-signal simulations for 1, 3, and 5 GHz driving fre-
quencies are shown in Fig. 10(a). For each frequency, the
source has an amplitude of 0.4 volts peak-to-peak. The har-
monic spectra computed from harmonic-balance are Fourier
transformed to render steady-state time responses. Signals
V,out are traced over one cycle at each frequency for the
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Fig. 8. MOM computed gain of microstrip meander, showing significant
radiation loss at higher frequencies.
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Fig. 9. Amplifier small-signal gain with MOM and Libra characterizations
of the meander and with microstrip meander absent.

amplifier with the meander characterized both by MOM and
Libra. The large-signal responses with the meander removed
are given in Fig. 10(b). In this case, the signals are nearly
identical. The MESFET is overdriven, producing clipping dis-
tortion at the output. At 1 GHz, the full-wave and Libra based
amplifier simulations are in good agreement. As the frequency
is increased to 5 GHz, however, pronounced differences appear
in the predicted distortion. While meander characterizations by
Libra and MOM are comparable at 5 GHz, clipping produces
significant energy in the harmonics at 10 and 15 GHz, where
MOM and Libra diverge.

V. CONCLUSION

In this paper, we have demonstrated a technique for full-
wave analysis of microstrip interconnects and its integration
with microwave circuit simulation.
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Fig. 10. Time-domain amplifier output computed using harmonic-balance
analysis with 0.4 volt p-p (large-signal) input at 1, 3 and 5 GHz: (a) responses
with MOM and Libra characterization of the meander, and (b) responses with
microstrip meander absent.

A description was given of interconnect modeling through
application of the method-of-moments to a mixed-potential
integral equation. We employed a recently published algorithm
for efficient and accurate evaluation of microstrip Green’s
functions, demonstrating that for uniform discretization in the
MOM procedure, impedance matrix fill-time can be reduced
to the point where matrix solve-time is dominant.

The importance of full-wave analysis was demonstrated in
the case of a microstrip stub, where our overall procedure
compared favorably with experimental data available in the
literature. Results from a modern commercial microwave CAD
package compared less favorably.

Small- and large- signal analyses were applied in simulating
a single-stage amplifier circuit. The circuit incorporated a me-
ander microstrip section whose characteristics were predicted
by both full-wave analysis and a microwave CAD package.

853

With small-signal analysis, differences in characterizing the
meander were manifest in the amplifier response at higher
frequencies. When driven at lower frequencies with a large
signal, harmonics generated by the amplifier at higher fre-
quencies resulted in different distortion phenomena amongst
the two meander representations.
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